CHAPTER 6 DENTAL IMPLANT THERAPY FOR MEDICALLY COMPLEX PATIENTS
This chapter focuses on a number of systemic factors that have an impact on the indications, contraindications, and success rates of endosseous implants. The results of this modern treatment approach—implants—are different when applied to a health-compromised patient or, more accurately defined, a medically complex patient. It is of the utmost importance that the treating dentist consider the interaction between “local” and “systemic” factors. This chapter will address the latter.1
Dental Implant Therapy for the Diabetic Patient
Between 6% and 7% of the U.S. population are affected by this metabolic disease (Figure 6-1).2 With this prevalence, every dental practice would have 60 to 70 diabetic patients for every 1000 persons, but half of them would be undiagnosed.
Lipid deposition will result in atherosclerosis and microangiopathy observed in the systemic vascular bed, including the alveolar bone and periodontal tissues.3 Hyperglycemia also results in the accumulation of advanced glycation end-products, which will impair the collagen metabolism and bind to monocyte and macrophage cell membranes, thus altering the wound-healing process and promoting infectious inflammatory processes.4 In light of these effects, it becomes clear that the complex process of implant treatment for diabetic patients demands special considerations.
The first line of management in the diabetic patient is diet control. The central role of a healthy and functional masticatory apparatus is obvious and concurs with the objectives of the present chapter. The insulin-dependent diabetes mellitus (IDDM) patient is controlled with daily injections or with the help of a subcutaneous insulin infusion pump. The latter has shown significant amelioration of both symptoms and systemic complications.5 Non-insulin-dependent diabetes mellitus (NIDDM) patients are controlled with different oral agents that stimulate insulin secretion, prevent glycogenolysis in the liver, increase tissue sensitivity to insulin, decrease hepatic gluconeogenesis, or slow the digestion and absorption of glucose from the intestine. It is essential that the dentist be familiar with their effects and side effects because the length of action differs between the different agents. This information should be sought from the literature or from the patient’s physician.
In diabetic animal models a reduced bone-implant contact and bone density was shown.7 It appears though that the success of osseointegration is greater in the mandible, as shown by a meta-analysis of two implant systems revealing a 3.2% early failure rate, increasing to 5.4% for the late failures.8 Success rates of up to 94.3% have been reported in diabetic patients.9 Interestingly, reports by Olson et al.10 and Fiorellini et al.11 did not show a direct correlation between the success rates of implants and diabetes control, as indicated by the glucose and HbA1c levels.
The use of antibiotics, although controversial in implant therapy, seems to be beneficial in diabetic patients. Prophylactic antibiotics will result in high tissue concentration levels, thus preventing wound infection. Bactericidal low-toxicity antibiotics are recommended, such as penicillin or amoxicillin. Clindamycin, metronidazole, and cephalosporin are also effective.6 Significantly fewer failures occur when preoperative antibiotics are used.12
Additional support for implant therapy indications in both type 1 and type 2 diabetic patients comes from the study of Farzad et al.13 They followed 25 patients with 136 implants and noted a 96.3% success rate during the healing period and 94.1% 1 year later even though the patients were managed by appropriate diabetes control and administration of prophylactic antibiotics.
Although the use of implants remains controversial, it appears that highly trained and experienced operators can ensure successful treatment in diabetic patients as in the general population. The procedure should be postponed for uncontrolled diabetic patients until better control is achieved.14
Dental Implant Therapy for the Hypertensive Patient
Hypertension is the most common primary diagnosis in the United States, affecting 50 million Americans.15 In order to apply invasive dental treatments such as osseointegrated implants to this very large segment of the population, a basic knowledge about hypertension and its complications, treatment, and side effects is mandatory. According to the new national guidelines on hypertension summarized for dentistry by Herman et al.,16 “for people older than 50 years a systolic blood pressure greater than 140 mmHg is a much more important risk factor for cardiovascular disease than is elevated diastolic pressure.” Previously, a diastolic blood pressure of 90 mmHg defined hypertension.
The recommendations presented here were extrapolated from studies based on oral surgery patients as specific studies on hypertension and dental implant therapy were not available. Patients with well-controlled hypertension and patients with stage 1 hypertension (140-159/90-99 mmHg) are considered treatable for all dental procedures.17 However, particular risk assessment is mandatory especially when complex surgical procedures such as sinus lifts, bone augmentation, and multiple implants are anticipated.18
On many occasions dentists are given advice from physicians: “This patient is hypertensive. Avoid using adrenaline in local anesthesia.” This certainly is a matter for debate. Bader et al.19 conducted an extensive review of the cardiovascular effects of epinephrine in dental local anesthesia and did not find sufficient evidence to totally avoid its use. They reviewed 373 papers on this subject. Only 6 studies with 177 hypertensive patients met the inclusion criteria. The patients received anesthesia with 1 : 100,000 epinephrine for dental extractions. In hypertensive patients the systolic blood pressure increased by 4 mmHg, the heart rate increased by 6 beats/minute, and the diastolic blood pressure decreased by 1.0 mmHg. In none of the studies did any patient report adverse events. However, two electrocardiographic studies associated premature ventricular contraction with epinephrine and one reported atrial fibrillation in a patient with cardiac disease.
The Use of Epinephrine on Local Anesthesia for Medically Complex Patients
The advantages of vasoconstrictors in local anesthesia are obvious and have been widely discussed in the literature. Both the length of time and the level of anesthesia are increased, leading to less bleeding and fewer toxic effects of the anesthetic substance. In a well-designed study Knoll-Kohler et al.24 used articaine 4% with epinephrine 1 : 200,000 and articaine 4% with double the concentration of epinephrine, 1 : 100,000, for the extraction of wisdom teeth. A higher systemic norepinephrine concentration in the former group pointed to the necessity of introducing the vasoconstrictor to reduce pain-induced stress. Their results underline the advantage of using appropriate concentrations of vasoconstrictors, especially for patients with cardiovascular disease for whom stress must be avoided as much as possible. It is of interest to note that the adrenal medulla secretes 2.5-7.5 mcg of epinephrine per minute, whereas during severe stress this secretion increases twentyfold to fortyfold. The sympathetic nervous system is stimulated by pain, resulting in the release of norepinephrine from the nerve endings.
Both norepinephrine and epinephrine affect the cardiovascular system, but in different ways and on different receptors. The stimulation of beta-1 receptors in the heart increases the heart rate, which tends to increase the blood pressure as well, whereas the beta-2 receptors induce pulmonary vasodilatation, which tends to reduce the blood pressure. On the other hand, the alpha-adrenergic system has a mainly peripheral action, inducing vasoconstriction.25 Norepinephrine stimulates mainly the beta-1 receptors, resulting in a significant increase in blood pressure and pulse. It becomes obvious that combining it with local anesthetics is not recommended.
Epinephrine, which stimulates both beta-1 and beta-2 receptors, has a more balanced influence, resulting in minimal if any cardiovascular changes. The pharmacokinetics of epinephrine are also advantageous, since it is metabolized and eliminated from the blood in less than 10 minutes with a plasma half-life of less than 1 minute.26 In other words, even if there are hemodynamic changes, they will be short-lived.
The alpha-agonist effect of epinephrine and norepinephrine is peripheral vasoconstriction with a limited influence on blood pressure. Hersch et al.27 found an increase in the systolic blood pressure, from 125 to 131 mmHg, when injecting local anesthetics with epinephrine 1 : 100,000 and no change with a 1 : 200,000 concentration. The diastolic pressure decreased with both formulations from 73 to 69 mmHg.