Evidence-Based Decision Making in Orbital Fractures

Key points

  • An evidence-based clinical protocol for orbital fractures will facilitate in the decision making of which type of treatment is most beneficial.

  • Limited enophthalmos and diplopia without muscle entrapment: a wait-and-see policy is justified when adequate consecutive orthoptic evaluation can be carried out and sufficient recovery of eye motility is demonstrated.

  • If there is an indication for surgical intervention with computer-assisted surgery, including virtual surgical planning, the use of a patient-specific implant and intraoperative navigation will increase the predictability of the orbital reconstruction.

  • If correct criteria are met, a nonsurgical approach toward orbital wall fractures shows promising results and functional outcome.

Introduction

In 1957, Smith and Reagan described the mechanism of internal orbit correction after a blow-out fracture. The investigators advocated early intervention by exploration and reconstruction of the orbital defect. Ten years later, Converse and colleagues published a 10-year survey on orbital fractures and recommended a more conservative approach. In the 1970s, Putterman, an ophthalmologist, identified contusion and edema of the extraocular muscles as the main cause of diplopia and advocated a nonsurgical approach to prevent surgical-related problems, such as scarring and atrophy.

Koornneef, in his thesis in 1976 described the specific histologic spatial aspects of the orbital musculo-fibrous tissue of the internal orbit. If the damage to this framework is limited in case of trauma, the intrinsic capacity of these orbital tissues keeps the globe in position even in case of a large orbital wall fracture (1982).

The introduction of computed tomography (CT) for facial trauma in the mid-1980s resulted in better assessment and subsequently enabled three-dimensional (3D) visualization of the orbital content. This led to a more aggressive surgical approach; in time, the clinical symptoms and CT data were found to correlate, precipitating in new CT driven protocols with fewer surgical interventions. In 2002, Burnstine published his landmark paper on the clinical recommendations for repair of isolated orbital floor fractures and reviewed evidence-based approaches. The implementation of computer-assisted surgery with advanced diagnostics and preoperative virtual planning, navigation guidance, and intraoperative imaging in the mid-2000s further improved the predictability in the outcome of a reconstruction.

Despite all the new developments and insight information, management of orbital wall fractures is still subject to ongoing debate. The complex soft tissue architecture of the periorbit and its response to trauma and surgery makes the causes of diplopia multifactorial and difficult to address. In this article, the focus lies on the clinical decisions, which can be made based on the true indications, as discussed in the Leander Dubois and colleagues’ article, “ Ongoing Debate in Clinical Decision Making in Orbital Fractures: Indications, Timing, and Biomaterials ,” in this issue.

Patient presentation on admission

A multidisciplinary approach is necessary. At first presentation, standardized oral and maxillofacial (OMF) and ophthalmologic examination, including orthoptic investigation, is performed. CT scans are made according to midfacial trauma protocol: using a Siemens (Munich, Germany) Somatom Volume Zoom, equal exposure was used; 1-mm slice thickness, 1-mm increments, 120 kV, 30 mAs. Settings at window of 2000, a level of 400, field of view of 140 mm and a matrix size of 512 × 512.

Urgent indications for emergency orbital intervention are singled out: disturbed vision due to compression on the optic nerve in the case of a retrobulbar hematoma, globe perforation, severe globe dislocation, entrapped extraocular muscle, especially in case of a white-eyed blow-out fracture, and the occurrence of an oculo-cardiac reflex, were already discussed in the Gijsbert J. Hötte and Ronald O. B. De Keizer’s article, “ Ocular Injury and Emergencies Around the Globe ,” in this issue. In most of these indications, close collaboration with an ophthalmologist is mandatory.

After thorough examination by the OMF surgeon, ophthalmologic examination is required to assess vision of both eyes, assess ophthalmologic history (pretraumatic pathology, such as amblyopia or squint), and inspection of the globe and contents. Hertel measurement may be carried out by either the OMF surgeon or ophthalmologist ( Fig. 1 ).

Fig. 1
Hertel exophthalmometer in use.
( Courtesy of Leander Dubois, MD, DMD, PhD)

Orthoptic tests are required to objectivate existing diplopia and motility disturbances.

Final clinical decision making is based on the clinical findings, subjective and objective measurements, and CT imaging results.

The role of orthoptic evaluation

Objective and repeated measurements should be performed by the orthoptist. In the orthoptic examination, among other measurements, the following items are measured: prism cover test, ductions, and the field of binocular single vision (BSV).

Measuring the ductions and BSV is done with the Goldmann perimeter, with the patient sitting in front of the device ( Fig. 2 A, B). In a trauma setting, the measurements can sometimes be difficult to perform because of logistics, limited mobility of the patient, or considerable periorbital swelling. In that case, several attempts should be made in time to perform the measurements to gain information at the successive moments. Baseline measurements are important to assess the improvement of ductions and BSV within the first 10 to 14 days after the trauma. It is also known that patients with a BSV less than 60 or diplopia in the central gaze will benefit from surgery, although generally there is a high chance that diplopia will persist even after orbital reconstruction. A limited motility of less than 15° (absolute restriction) is often the result of entrapment of incarcerated tissue. A relative motility disorder is often the result of swelling, protruding orbital content, and/or pain. Diplopia can occur as a result of the motility disorder, but it is also possible that there is no diplopia in a minimal motility disorder due to habituation and adjustment of the central nervous system. The Yvette Braaksma- Besselink and Hinke Marijke Jellema’s article, “ Orthoptic Evaluation and Treatment in Orbital Fractures ,” in this issue, can be consulted for a detailed explanation of the orthoptic examination.

Fig. 2
( A ) Goldmann perimeter. ( B ) BSV score chart.
( Courtesy of Hinke Marijke Jellema, CO, MMedSci, PhD, Amsterdam, the Netherlands)

Decision making

The indications for and timing of surgery are the main topics in the ongoing debate on the management of orbital wall fractures, as described in the Leander Dubois and colleagues’ article, “ Ongoing Debate in Clinical Decision Making in Orbital Fractures: Indications, Timing, and Biomaterials ,” in this issue. Generally, small asymptomatic fractures do not require surgery, whereas larger fractures with early enophthalmos do require orbital reconstruction. The indications for immediate reconstruction are clear to most clinicians. Controversy arises in cases with large orbital wall fractures without early enophthalmos. In some studies, surgery is indicated based on the size (>2 cm 2 or >50%) of the fracture, which is measured on a CT scan or in the case of severe diplopia and limited motility within several days after trauma. , The assumption is that early surgery (<2 weeks) results in a better clinical outcomes and causes less iatrogenic damage. However, the size of the fracture as such does not necessarily correlate with the development of late enophthalmos, whereas moderate diplopia is demonstrated to resolve without intervention. Early surgical treatment holds a risk for overtreatment in patients who may have recovered spontaneously over time. The indication debate has subsequently shifted to discussion on the type of fractures that may be eligible for late repair (>2 weeks). There are differing views in the literature; it has been shown that delayed reconstruction has no limiting effect on the clinical outcome; it allows time to tell you whether diplopia is slowly improving and whether enophthalmos will occur.

When surgical intervention (orbital wall reconstruction) is indicated, several studies have demonstrated that virtual surgical planning (VSP) can assist the surgeon in achieving a better and more predictable treatment outcome. Navigation-assisted surgery will further enhance the predictability of the orbital wall reconstruction. , The corresponding principles are explained in more detail in the Ruud Schreurs and colleagues’ article, “ Advanced Diagnostics and Three-dimensional Virtual Surgical Planning in Orbital Reconstruction ”; and Ruud Schreurs and colleagues’ article, “ Advanced Concepts of Orbital Reconstruction: A Unique Attempt to Scientifically Evaluate Individual Techniques in Reconstruction of Large Orbital Defects ,” in this issue. Using the popular transconjunctival approach, adequate exposure of the medial and lateral wall and orbital floor is accomplished and access to the posterior ledge is provided. , A comprehensive overview of how primary orbital fractures should be treated is given in the Simon Holmes’ article, “ Primary Orbital Fracture Repair ,” in this issue.

Both the surgical and nonsurgical approach can result in complications. The most common nonsurgical complications are persisting motility restrictions/diplopia and early or late enophthalmos. Complications of the surgical treatment strategy must be differentiated in approach-related and those related to the surgical procedure. Relatively common approach-related complications are entropion (trans-conjunctival), increased scleral show, ectropion (subciliary) and adhesions ( Fig. 3 ). Other complications include persistent motility restrictions or persistent enophthalmos, which may remain.

Fig. 3
Complications: ( A ) entropion, ( B ) increased scleral show, ( C ) ectropion, ( D ) adhesions.
( Courtesy of Leander Dubois, MD, DMD, PhD)

If surgical intervention is waived, one should realize that it may take several weeks before clinical symptoms resolve; however, late surgical intervention is generally assumed to result in more negative sequelae. , Nevertheless, a systematic review of the literature shows no effect of delayed treatment and good clinical outcome can be seen after late reconstructions. In the early stage, it is difficult to predict how the soft tissue will recuperate. Indications for surgery should be based on existing rather than expected problems. For that reason, a clinical protocol with special emphasis on nonsurgical treatment based on functional evaluation is suggested ( Fig. 4 ).

Fig. 4
Flow chart and timeline of the evidence-based clinical protocol for orbital fracture management.

The clinical protocol derived from Jansen and colleagues is described as follows.

Clinical examination is performed:

  • Examination by the OMF surgeon:

    • Subjective diplopia, enophthalmos, infraorbital hypesthesia, hypoglobus, pain, and other symptoms. A CT scan is obtained according to protocol when a fracture is suspected. Rule out indications for immediate surgery within 24 hours.

  • Ophthalmic examination:

    • Exophthalmometry (enophthalmos of >2 mm at first presentation or after 2 weeks is an indication for early surgery with 2–3 weeks), vision, bulb pressure.

  • Orthoptic examination:

    • Ductions: the motility perimeter (Goldmann) is used to measure the ductions in all 4 directions with the head accurately in primary position (see the Yvette Braaksma- Besselink and Hinke Marijke Jellema’s article, “ Orthoptic Evaluation and Treatment in Orbital Fractures ,” in this issue). Abduction or adduction of less than 25° and elevation or depression of less than 15° at first presentation are indications for early surgery within 2 weeks. If after 2 weeks of follow-up the ductions have improved less than 8°, there is an indication for delayed surgery between 2 and 3 weeks. Orthoptic evaluation is repeated after 3, 6, and 12 months if necessary.

    • Field of binocular vision (BSV) is performed with the use of the motility perimeter (Goldmann); the BSV is scored at a score sheet from 0 to 100 points.

Recovery

It is important to closely monitor the patient immediately after surgery of the orbit.

Frequent vision control (once every 15 minutes for the initial 2 hours) is necessary, as loss of vision is an alarming symptom, which is most likely to be caused by increasing pressure on the optic nerve either as a result of progressive orbital soft tissue swelling or retrobulbar hematoma. Color vision diminishes first (color red first, followed by green) and is an early warning sign of compression of the optic nerve. The nursing staff in the recovery room should be informed and alerted of these signs. Decompression via a lateral canthotomy may be indicated, as an emergency procedure in such cases. When stable, the patient is brought back to the ward where frequent monitoring of vision control is still important; however, the frequency can be cut down to once every hour.

The patient will stay in the hospital for 24 hours after surgery and can be discharged the next day if no complications develop. If an intraoperative CT scan was not performed, one should be obtained before discharge to check the position of the reconstruction plate/titanium mesh.

At discharge, the patient is informed that double vision will be experienced for the first 10 to 14 days and possibly longer. Instructions are given to mobilize the eye as much as possible: monocular orthoptic exercises 3 times per day for at least 4 weeks to prevent adhesions occurring and to stimulate reduction of orbital soft tissue swelling, especially the extraocular muscles.

The patient is followed-up by the involved OMF surgeon, the ophthalmologist, and, as important, by the orthoptist: consecutive BSV and duction measurements at 2 weeks, 6 weeks, 3 months, 6 months, and 12 months after surgery. Successive orthoptic outcome measurements inform the surgeon whether or not additional surgery is required.

Five patient cases are introduced as follows to illustrate the practical implementation of the clinical protocol.

Case 1

An 82-year-old woman with a large orbital floor fracture (>50% of the floor/Jaquiéry class III) on the left side caused by a collapse in the bathroom ( Figs. 5 A–C and 6A–C ). At the orthoptic evaluation, the BSV was 54 and there was limited eye motility in abduction (42° OD/18° OS), elevation (21° OD/15° OS), and depression (56° OD/43° OS). There was no significant enophthalmos (Hertel 18/19). Despite the large fracture, the clinical protocol allows a nonsurgical treatment. Instructions for orthoptic exercises were provided.

Fig. 5
Case 1: clinical appearance at first presentation: ( A ) en face, ( B ) submental, ( C ) elevation.
( Courtesy of Leander Dubois, MD, DMD, PhD)

Fig. 6
Case 1: coronal and sagittal views of the CT scan at first presentation ( A–C ).
( Courtesy of Leander Dubois, MD, DMD, PhD)

After 2 weeks, the ductions and BSV improved significantly ( Fig. 7 A–C). In the follow-up period of 6 to 12 months the BSV was 100, there was no limited motility, and enophthalmos remained at 1 mm ( Fig. 8 A–C) The patient completed nonsurgical treatment with a successful clinical result ( Fig. 9 ).

Fig. 7
Case 1: clinical result 2 weeks after trauma, ( A ) en face, ( B ) submental, ( C ) elevation.
( Courtesy of Leander Dubois, MD, DMD, PhD)

Feb 28, 2021 | Posted by in Oral and Maxillofacial Surgery | Comments Off on Evidence-Based Decision Making in Orbital Fractures

VIDEdental - Online dental courses

Get VIDEdental app for watching clinical videos