CAD-CAM cobalt-chromium surgical template for static computer-aided implant surgery: A dental technique

Abstract

A digital process for designing and manufacturing a cobalt-chromium (Co-Cr) surgical template for static computer-aided implant surgery (s-CAIS) is described. The use of Co-Cr provides the advantage of a material with improved mechanical properties to reduce the possibility of surgical template fracture during s-CAIS. The stronger material also allows for a thinner surgical template, which in turn allows better access when the interarch operative space is limited or a longer implant is inserted. Limitations of the technique include the need for computer-aided manufacturing technology and, with the use of Co-Cr, a higher overall cost.

Contemporary static computer-aided implant surgery (s-CAIS) systems allow digital prosthetic and surgical planning by using superimposed data sets from multiple 3D imaging sources. A computer-aided design and computer-aided manufacturing (CAD-CAM) surgical template can be fabricated to transfer the planned implant position to the intraoral environment. Stereolithography (SLA) is commonly used to additively manufacture the surgical template by using photopolymering resin, and the surgical template should have enough material thickness to prevent fracture during the s-CAIS. A recent systematic review reported that although the fracture of a surgical template is a rare intraoperative complication during s-CAIS, it is considered to be a major complication with a high risk for the overall success of the treatment. In the event of the fracture of a surgical template, if the clinician cannot complete the surgery with a conventional surgical approach, the surgery would need to be canceled and the patient reappointed.

Limited mouth opening could contraindicate the use of s-CAIS for a posterior implant or if a longer implant is planned. In these circumstances, the combined length and thickness of the surgical instruments, planned implant, and surgical template often exceed the patient’s maximum mouth opening.

Because of its excellent mechanical properties and biocompatibility, cobalt-chromium (Co-Cr) alloy is gaining popularity in dentistry as a restorative material for fixed and removable dental prostheses. Although the conventional lost-wax casting technique can be used to fabricate Co-Cr dental prostheses, CAM technologies, including computer numerical control (CNC) milling and direct metal printing (DMP), have become popular alternatives because of improved manufacturing efficiency. The purpose of this report was to describe an alternative technique by using a CAD-CAM Co-Cr surgical template for s-CAIS.

Technique

Jan 12, 2020 | Posted by in Prosthodontics | Comments Off on CAD-CAM cobalt-chromium surgical template for static computer-aided implant surgery: A dental technique

VIDEdental - Online dental courses

Get VIDEdental app for watching clinical videos