Antidysrhythmics

5.13
Antidysrhythmics

  • Esmolol and metoprolol discussed on page 143
  • See Figure 4.12 for antidysrhythmics classifications

Adenosine

  • Mechanism of Action
    • Adenosine receptor agonist
  • Clinical Indications
    • Stable AVNRT/AVRT
      • First dose
        • Adult: 6 mg IV
        • Peds: 0.1 mg/kg IV
      • Second dose
        • Adult: 12 mg IV
        • Peds: 0.2 mg/kg IV
  • Cerebral
    • Minimal
  • Cardiovascular
    • Transient conduction cessation at the SA and AV node
    • ↓ MAP
    • ↓ HR
    • ↓ CO
  • Pulmonary
    • Bronchoconstriction
  • Renal
    • Minimal
  • Hepatic
    • Minimal
  • Contraindications
    • Any rhythm that is not AVRT/AVNRT
    • WPW syndrome
    • Asthma
  • Board Facts
    • Rapid injection following by a saline flush
    • Raise limb to facilitate adenosine movement into central circulation
    • If AVRT/AVNRT rhythm does not terminate after second dose of adenosine, consider monomorphic ventricular tachycardia
    • Methylxanthines antagonize adenosine requiring an increased dose
    • Carbamazepine and dipyridamole potentiate adenosine action and thus require a reduced dose [108]
    • Transplanted hearts/denervated hearts require a reduced dose [109]

Amiodarone

  • Mechanism of Action
  • Clinical Indications
    • VF/pulseless VT
      • First dose
        • Adult: 300 mg IV
        • Peds: 5 mg/kg IV
      • Second dose
        • Adult: 150 mg IV
        • Peds 2.5 mg/kg IV
    • Stable wide QRS tachycardia with a pulse
      • Adult: 150 mg IV over 10 minutes
      • Peds: 5 mg/kg IV over 20–60 minutes
    • Atrial fibrillation
  • Cerebral
    • Minimal
  • Cardiovascular [110]
    • ↓ MAP
    • Minimal change in HR
    • ↑ CO
  • Pulmonary
    • Pulmonary fibrosis (in chronic use)
  • Renal
  • Hepatic
    • Primary site of metabolism
    • Hepatic toxicity (primarily with chronic use) [113]
  • Contraindications
    • Pregnancy
    • Renal pathology
    • Pulmonary pathology
    • Hepatic pathology
    • Thyroid pathology
  • Board Facts
    • Chronic use may cause blue–gray skin discoloration and toxic toxicity [114, 115]
      • Amiodarone toxicity is mostly related to chronic oral, rarely occurs with acute administration

Atropine

  • Mechanism of Action
    • Muscarinic receptor antagonist
  • Clinical Indications
    • Bradycardia with a pulse
      • Adult: 0.5 mg IV (Max 3 mg)
      • Peds: 0.02 mg/kg IV (Max 1 mg)
      • Peds: 0.02 mg/kg IM
    • Coadministration with neuromuscular reversal
      • Neuromuscular reversal covered on page 138
  • Cerebral
    • May present as excitation or sedation in high doses
  • Cardiovascular
    • ↑ CO
    • ↑ HR
    • Low‐dose atropine may cause bradycardia [75]
  • Pulmonary
    • Bronchodilator
    • ↓ Secretions and thicken them
  • Renal
    • Minimal
  • Hepatic
    • Primary site of metabolism
  • Contraindications
    • Acute angle glaucoma
    • Cardiac transplantation due to denervation
      • Paradoxical bradycardia can occur [76]
  • Board Facts
    • Crosses placenta and BBB

Diltiazem

  • Mechanism of Action
    • Non‐dihydropyridine calcium channel antagonist (Figure 4.12)
  • Clinical Indications
    • Stable atrial flutter
      • 5–10 mg IV; Titrate, Max 50 mg
        • 0.25 mg/kg initial; 0.35 mg/kg next
    • Stable atrial fibrillation
      • 5–10 mg IV; Titrate, Max 50 mg
        • 0.25 mg/kg initial; 0.35 mg/kg next
    • Stable AVNRT/AVRT
      • 5–10 mg IV; Titrate, Max 50 mg
        • 0.25 mg/kg initial; 0.35 mg/kg next
  • Cerebral
    • ↑ CBF
  • Cardiovascular
    • ↑ CO
    • ↓ HR
    • ↓ MAP
  • Pulmonary
    • Minimal
  • Renal
    • Minimal
  • Hepatic
    • Primary site of metabolism
  • Contraindications
    • WPW syndrome
    • Bradycardia
    • Cardiac conduction delays
  • Board Facts
    • Gingival overgrowth is generally caused by chronic administration [116]
    • Diltiazem can increase blood digoxin levels [117]

Verapamil

  • Mechanism of Action
    • Non‐dihydropyridine calcium channel antagonist (Figure 4.12)
  • Clinical Indications
    • Stable atrial flutter
      • 2.5–5 mg IV; Titrate to max 20 mg
    • Stable AVNRT/AVRT
      • 2.5–5 mg IV; Titrate to max 20 mg
  • Cerebral
    • ↑ CBF
  • Cardiovascular [118]
    • ↓ CO
    • ↓ HR
    • ↓ MAP
  • Pulmonary
    • Minimal
  • Renal
    • Minimal
  • Hepatic
  • Contraindications
    • WPW syndrome
    • Bradycardia
    • Cardiac conduction delays
  • Board Facts
    • Gingival overgrowth is generally caused by chronic administration [120]
    • Inhibitor of P450 system [121]

References

  1. 1 Peck, T.E. and Harris, B. (2021). Pharmacology for Anaesthesia and Intensive Care, 5e. Cambridge University Press.
  2. 2 Aranake, A., Mashour, G.A., and Avidan, M.S. (2013). Minimum alveolar concentration: ongoing relevance and clinical utility. Anaesthesia 68 (5): 512–522. https://doi.org/10.1111/anae.12168.
  3. 3 Cameron, C.B., Robinson, S., and Gregory, G.A. (1984). The minimum anesthetic concentration of isoflurane in children. Anesth. Analg. 63 (4): 418–420.
  4. 4 Ekberg, E., Nilsson, I.M., Michelotti, A. et al. (2023). Diagnostic criteria for temporomandibular disorders – INfORM recommendations: comprehensive and short‐form adaptations for adolescents. J. Oral Rehabil. https://doi.org/10.1111/joor.13488.
  5. 5 Fu, A.D., McDonald, H.R., Eliott, D. et al. (2002). Complications of general anesthesia using nitrous oxide in eyes with preexisting gas bubbles. Retina 22 (5): 569–574. https://doi.org/10.1097/00006982‐200210000‐00006.
  6. 6 Nagele, P., Brown, F., Francis, A. et al. (2013). Influence of nitrous oxide anesthesia, B‐vitamins, and MTHFR gene polymorphisms on perioperative cardiac events: the vitamins in nitrous oxide (VINO) randomized trial. Anesthesiology 119 (1): 19–28. https://doi.org/10.1097/ALN.0b013e31829761e3.
  7. 7 Hathout, L. and El‐Saden, S. (2011). Nitrous oxide‐induced B₁₂ deficiency myelopathy: perspectives on the clinical biochemistry of vitamin B₁₂. J. Neurol. Sci. 301 (1–2): 1–8. https://doi.org/10.1016/j.jns.2010.10.033.
  8. 8 Divatia, J.V., Vaidya, J.S., Badwe, R.A., and Hawaldar, R.W. (1996). Omission of nitrous oxide during anesthesia reduces the incidence of postoperative nausea and vomiting. A meta‐analysis. Anesthesiology 85 (5): 1055–1062. https://doi.org/10.1097/00000542‐199611000‐00014.
  9. 9 Combes, X., Schauvliege, F., Peyrouset, O. et al. (2001). Intracuff pressure and tracheal morbidity: influence of filling with saline during nitrous oxide anesthesia. Anesthesiology 95 (5): 1120–1124. https://doi.org/10.1097/00000542‐200111000‐00015.
  10. 10 Brioni, J.D., Varughese, S., Ahmed, R., and Bein, B. (2017). A clinical review of inhalation anesthesia with sevoflurane: from early research to emerging topics. J. Anesth. 31 (5): 764–778. https://doi.org/10.1007/s00540‐017‐2375‐6.
  11. 11 Torri, G. (2010). Inhalation anesthetics: a review. Minerva Anestesiol. 76 (3): 215–228.
  12. 12 Tanaka, S., Tsuchida, H., Nakabayashi, K. et al. (1996). The effects of sevoflurane, isoflurane, halothane, and enflurane on hemodynamic responses during an inhaled induction of anesthesia via a mask in humans. Anesth. Analg. 82 (4): 821–826. https://doi.org/10.1097/00000539‐199604000‐00025.
  13. 13 Tateishi, T., Asoh, M., Nakura, H. et al. (1999). Carbamazepine induces multiple cytochrome P450 subfamilies in rats. Chem. Biol. Interact. 117 (3): 257–268. https://doi.org/10.1016/s0009‐2797(98)00110‐0.
  14. 14 Frink, E.J., Morgan, S.E., Coetzee, A. et al. (1992). The effects of sevoflurane, halothane, enflurane, and isoflurane on hepatic blood flow and oxygenation in chronically instrumented greyhound dogs. Anesthesiology 76 (1): 85–90. https://doi.org/10.1097/00000542‐199201000‐00013.
  15. 15 Agnew, N.M., Pennefather, S.H., and Russell, G.N. (2002). Isoflurane and coronary heart disease. Anaesthesia 57 (4): 338–347. https://doi.org/10.1046/j.1365‐2044.2002.02469.x.
  16. 16 Burchardi, H. and Kaczmarczyk, G. (1994). The effect of anaesthesia on renal function. Eur. J. Anaesthesiol. 11 (3): 163–168.
  17. 17 Merin, R.G., Bernard, J.M., Doursout, M.F. et al. (1991). Comparison of the effects of isoflurane and desflurane on cardiovascular dynamics and regional blood flow in the chronically instrumented dog. Anesthesiology 74 (3): 568–574. https://doi.org/10.1097/00000542‐199103000‐00027.
  18. 18
    Only gold members can continue reading. Log In or Register to continue

Stay updated, free dental videos. Join our Telegram channel

Oct 16, 2024 | Posted by in Oral and Maxillofacial Surgery | Comments Off on Antidysrhythmics

VIDEdental - Online dental courses

Get VIDEdental app for watching clinical videos